Back to Search Start Over

Characterization of Extracellular Vesicles from Bronchoalveolar Lavage Fluid and Plasma of Patients with Lung Lesions Using Fluorescence Nanoparticle Tracking Analysis

Authors :
Magdalena Dlugolecka
Jacek Szymanski
Lukasz Zareba
Zuzanna Homoncik
Joanna Domagala-Kulawik
Malgorzata Polubiec-Kownacka
Malgorzata Czystowska-Kuzmicz
Source :
Cells, Vol 10, Iss 12, p 3473 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

The current lack of reliable methods for quantifying extracellular vesicles (EVs) isolated from complex biofluids significantly hinders translational applications in EV research. The recently developed fluorescence nanoparticle tracking analysis (FL-NTA) allows for the detection of EV-associated proteins, enabling EV content determination. In this study, we present the first comprehensive phenotyping of bronchopulmonary lavage fluid (BALF)-derived EVs from non-small cell lung cancer (NSCLC) patients using classical EV-characterization methods as well as the FL-NTA method. We found that EV immunolabeling for the specific EV marker combined with the use of the fluorescent mode NTA analysis can provide the concentration, size, distribution, and surface phenotype of EVs in a heterogeneous solution. However, by performing FL-NTA analysis of BALF-derived EVs in comparison to plasma-derived EVs, we reveal the limitations of this method, which is suitable only for relatively pure EV isolates. For more complex fluids such as plasma, this method appears to not be sensitive enough and the measurements can be compromised. Our parallel presentation of NTA-based phenotyping of plasma and BALF EVs emphasizes the great impact of sample composition and purity on FL-NTA analysis that has to be taken into account in the further development of FL-NTA toward the detection of EV-associated cancer biomarkers.

Details

Language :
English
ISSN :
20734409
Volume :
10
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Cells
Publication Type :
Academic Journal
Accession number :
edsdoj.56d9790f999849d7881963fba4b0d484
Document Type :
article
Full Text :
https://doi.org/10.3390/cells10123473