Back to Search Start Over

Xiao-Xu-Ming decoction extract regulates differentially expressed proteins in the hippocampus after chronic cerebral hypoperfusion

Authors :
Yue-Hua Wang
Ying-Lin Yang
Xiao Cheng
Jun Zhang
Wan Li
Guan-Hua Du
Source :
Neural Regeneration Research, Vol 14, Iss 3, Pp 470-479 (2019)
Publication Year :
2019
Publisher :
Wolters Kluwer Medknow Publications, 2019.

Abstract

Xiao-Xu-Ming decoction has been widely used to treat stroke and sequelae of stroke. We have previously shown that the active fractions of Xiao-Xu-Ming decoction attenuate cerebral ischemic injury. However, the global protein profile and signaling conduction pathways regulated by Xiao-Xu-Ming decoction are still unclear. This study established a two-vessel occlusion rat model by bilateral common carotid artery occlusion. Rats were intragastrically administered 50 or 150 mg/kg Xiao-Xu-Ming decoction for 4 consecutive weeks. Learning and memory abilities were measured with Morris water maze. Motor ability was detected with prehensile test. Coordination ability was examined using the inclined screen test. Neuronal plasticity was observed by immunofluorescent staining. Differentially expressed proteins of rat hippocampus were analyzed by label-free quantitative proteomics. Real time-polymerase chain reaction and western blot assay were used to identify the changes in proteins. Results showed that Xiao-Xu-Ming decoction dramatically alleviated learning and memory deficits, and motor and coordination dysfunction, and increased the expression of microtubule-associated protein 2. Xiao-Xu-Ming decoction extract remarkably decreased 13 upregulated proteins and increased 39 downregulated proteins. The regulated proteins were mainly involved in oxidation reduction process, intracellular signaling cascade process, and protein catabolic process. The signaling pathways were mainly involved in ubiquitin mediated proteolysis and the phosphatidylinositol signaling system. Furthermore, there was an interaction among Rab2a, Ptpn1, Ppm1e, Cdk18, Gorasp2, Eps15, Capza2, Syngap1 and Mt-nd1. Protein analyses confirmed the changes in expression of MT-ND1. The current findings provide new insights into the molecular mechanisms of Xiao-Xu-Ming decoction extract’s effects on chronic cerebral hypoperfusion.

Details

Language :
English
ISSN :
16735374 and 19867646
Volume :
14
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Neural Regeneration Research
Publication Type :
Academic Journal
Accession number :
edsdoj.56c19867646b58f24e9be3c5fecaf
Document Type :
article
Full Text :
https://doi.org/10.4103/1673-5374.245471