Back to Search Start Over

Using Ecopath Models to Explore Differences in Ecosystem Characteristics Between an Artificial Reef and a Nearby Natural Reef on the Coast of the North Yellow Sea, China

Authors :
Rongliang Zhang
Qianqian Zhang
Jianmin Zhao
Zhongxin Wu
Hui Liu
Lu Shou
Yibo Liao
Qinghe Liu
Yanbin Tang
Jiangning Zeng
Source :
Frontiers in Marine Science, Vol 9 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

The comparison of trophic structure and energy flow between natural and artificial reefs is imperative to evaluate whether these man-made structures work similarly to comparable natural reefs. Here, to characterize the potential difference in functioning between two types of reef ecosystems, two trophic models (Ecopath) at an artificial reef and an adjacent natural reef on the coast of the north Yellow Sea, China, were established. Both Ecopath models were divided into 18 functional groups from primary producers (algae and phytoplankton) and detritus to predatory species (e.g., Sebastes schlegelii). Model outputs showed that the ecosystem scale was smaller in the artificial reef (total system throughput (TPP) = 6,455.47 t·km−2·year−1) relative to its natural counterpart (TPP = 9,490.48 t·km−2·year−1). At both reef types, a large proportion of energy occurred at trophic levels I and II, and most of the primary production was utilized through a detritus pathway. This result implies a bottom-up energy flow control for both cases. However, two types of reef systems were behaving in a reasonable manner, as mean transfer efficiencies were similar to the Lindeman efficiency (10%). The ecosystem maturity of the artificial reef is not comparable to that of the natural reef for its inferior value of total primary production/total respiration (TPP/TR). Moreover, both the connectance index (CI) and system omnivory index (SOI) were slightly higher at the artificial reef relative to the natural reef as well as other coastal systems with parallel latitudes, suggesting that the current artificial system has formed complicated interspecies relations and high-level stability. This work updates our knowledge about the functioning evolvement of established artificial reefs and provides a baseline for the efficient management of coastal zones and further investigations.

Details

Language :
English
ISSN :
22967745
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Marine Science
Publication Type :
Academic Journal
Accession number :
edsdoj.55bd4bff5000452b95a99cff045988e5
Document Type :
article
Full Text :
https://doi.org/10.3389/fmars.2022.911714