Back to Search Start Over

Abnormal developmental trajectory and vulnerability to cardiac arrhythmias in tetralogy of Fallot with DiGeorge syndrome

Authors :
Chun-Ho Chan
Yin-Yu Lam
Nicodemus Wong
Lin Geng
Jilin Zhang
Virpi Ahola
Aman Zare
Ronald Adolphus Li
Fredrik Lanner
Wendy Keung
Yiu-Fai Cheung
Source :
Communications Biology, Vol 6, Iss 1, Pp 1-13 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Ventricular dysfunction and cardiac arrhythmias are well-documented complications in patients with repaired TOF. Whether intrinsic abnormalities exist in TOF cardiomyocytes is unknown. We establish human induced pluripotent stem cells (hiPSCs) from TOF patients with and without DiGeorge (DG) syndrome, the latter being the most commonly associated syndromal association of TOF. TOF-DG hiPSC-derived cardiomyocytes (hiPSC-CMs) show impaired ventricular specification, downregulated cardiac gene expression and upregulated neural gene expression. Transcriptomic profiling of the in vitro cardiac progenitors reveals early bifurcation, as marked by ectopic RGS13 expression, in the trajectory of TOF-DG-hiPSC cardiac differentiation. Functional assessments further reveal increased arrhythmogenicity in TOF-DG-hiPSC-CMs. These findings are found only in the TOF-DG but not TOF-with no DG (ND) patient-derived hiPSC-CMs and cardiac progenitors (CPs), which have implications on the worse clinical outcomes of TOF-DG patients.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.55a44531925e430da119cbbc22d1746c
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-023-05344-6