Back to Search Start Over

Impact of long-term fertilizer and summer warming treatments on bulk soil and birch rhizosphere microbial communities in mesic arctic tundra

Authors :
Michelle M. McKnight
Paul Grogan
Virginia K. Walker
Source :
Arctic, Antarctic, and Alpine Research, Vol 53, Iss 1, Pp 196-211 (2021)
Publication Year :
2021
Publisher :
Taylor & Francis Group, 2021.

Abstract

Recent climate warming in the Arctic is enhancing microbial decomposition of soil organic matter, which may result in globally significant greenhouse gas releases to the atmosphere. To better predict future impacts, bacterial and fungal community structures in both the bulk soil and the rhizosphere of Arctic birch, Betula glandulosa, were determined in control, greenhouse summer warming, and annual factorial nitrogen (N) and phosphate (P) addition treatments twelve years after their establishment. DNA sequence analyses at multiple taxonomic levels consistently indicated substantial bulk soil and rhizosphere microbial community differences among the fertilization treatments but no significant greenhouse effects. These results suggest that climate warming will likely increase the activity rates of soil microbial decomposers but without substantially altering the structure of either the bacterial or fungal communities. Differential abundance testing revealed changes in ectomycorrhizal fungal species of the genus Thelephora in both bulk soil and rhizosphere, with increases in their relative abundance in P and N + P amended plots compared with warming and controls. Because birch is the principal low Arctic ectomycorrhizal host, our results suggest that these fungi may promote this shrub’s competitiveness where tundra soil nutrient availability is enhanced by warming or other means, ultimately contributing to arctic vegetation “greening.”

Details

Language :
English
ISSN :
15230430 and 19384246
Volume :
53
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Arctic, Antarctic, and Alpine Research
Publication Type :
Academic Journal
Accession number :
edsdoj.54b2486b5f0044888e473986d43be4c1
Document Type :
article
Full Text :
https://doi.org/10.1080/15230430.2021.1951949