Back to Search Start Over

miRNA-7145-cuedc2 axis controls hematopoiesis through JAK1/STAT3 signaling pathway

Authors :
Yongsheng Xu
Rui Guo
Tao Huang
Chunming Guo
Source :
Cell Death Discovery, Vol 10, Iss 1, Pp 1-9 (2024)
Publication Year :
2024
Publisher :
Nature Publishing Group, 2024.

Abstract

Abstract Hematopoiesis ensures tissue oxygenation, and remodeling as well as immune protection in vertebrates. During embryogenesis, hemangioblasts are the source of all blood cells. Gata1a and pu.1 are co-expressed in hemangioblasts before hemangioblasts are differentiated into blood cells. However, the genes that determine the differentiation of hemangioblasts into myeloid or erythroid cell lineages have not been fully uncovered. Here we showed that miRNA-7145, a miRNA with previously unknown function, was enriched in erythrocytes at the definitive wave, but not expressed in myeloid cells. Overexpression and loss-of-function analysis of miRNA-7145 revealed that miRNA-7145 functions as a strong inhibitor for myeloid progenitor cell differentiation while driving erythropoiesis during the primitive wave. Furthermore, we confirmed that cuedc2 is one of miRNA-7145 targeted-genes. Overexpression or knock-down of cuedc2 partially rescues the phenotype caused by miRNA-7145 overexpression or loss-of-function. As well, overexpression and loss-of-function analysis of cuedc2 showed that cuedc2 is required for myelopoiesis at the expense of erythropoiesis. Finally, we found that overexpression of zebrafish cuedc2 in 293 T cell inhibits the JAK1/STAT3 signaling pathway. Collectively, our results uncover a previously unknown miRNA-7145-cuedc2 axis, which regulate hematopoiesis through inhibiting the JAK1/STAT3 signaling pathway.

Details

Language :
English
ISSN :
20587716
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cell Death Discovery
Publication Type :
Academic Journal
Accession number :
edsdoj.548c1b5df922491c9f80815089e258d2
Document Type :
article
Full Text :
https://doi.org/10.1038/s41420-024-01977-6