Back to Search
Start Over
Variational autoencoder-based chemical latent space for large molecular structures with 3D complexity
- Source :
- Communications Chemistry, Vol 6, Iss 1, Pp 1-14 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract The structural diversity of chemical libraries, which are systematic collections of compounds that have potential to bind to biomolecules, can be represented by chemical latent space. A chemical latent space is a projection of a compound structure into a mathematical space based on several molecular features, and it can express structural diversity within a compound library in order to explore a broader chemical space and generate novel compound structures for drug candidates. In this study, we developed a deep-learning method, called NP-VAE (Natural Product-oriented Variational Autoencoder), based on variational autoencoder for managing hard-to-analyze datasets from DrugBank and large molecular structures such as natural compounds with chirality, an essential factor in the 3D complexity of compounds. NP-VAE was successful in constructing the chemical latent space from large-sized compounds that were unable to be handled in existing methods, achieving higher reconstruction accuracy, and demonstrating stable performance as a generative model across various indices. Furthermore, by exploring the acquired latent space, we succeeded in comprehensively analyzing a compound library containing natural compounds and generating novel compound structures with optimized functions.
Details
- Language :
- English
- ISSN :
- 23993669
- Volume :
- 6
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5457904f4f54e489f843f4e0261fb18
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42004-023-01054-6