Back to Search Start Over

Muscle Synergy Plasticity in Motor Function Recovery After Stroke

Authors :
Yixuan Sheng
Jixian Wang
Gansheng Tan
Hui Chang
Qing Xie
Honghai Liu
Source :
IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 32, Pp 1657-1667 (2024)
Publication Year :
2024
Publisher :
IEEE, 2024.

Abstract

In certain neurological disorders such as stroke, the impairment of upper limb function significantly impacts daily life quality and necessitates enhanced neurological control. This poses a formidable challenge in the realm of rehabilitation due to its intricate nature. Moreover, the plasticity of muscle synergy proves advantageous in assessing the enhancement of motor function among stroke patients pre and post rehabilitation training intervention, owing to the modular control strategy of central nervous system. It also facilitates the investigation of long-term alterations in remodeling of muscle functional performance among patients undergoing clinical rehabilitation, aiming to establish correlations between changes in muscle synergies and stroke characteristics such as type, stage, and sites. In this study, a three-week rehabilitation monitoring experiment was conducted to assess the motor function of stroke patients at different stages of rehabilitation based on muscle synergy performance. Additionally, we aimed to investigate the correlation between clinical scale scores, rehabilitation stages, and synergy performance in order to provide a more comprehensive understanding of stroke patient recovery. The results of 7 healthy controls and 16 stroke patients showed that high-functioning patients were superior to low-functioning patients in terms of motor function plasticity towards healthy individuals. Moreover, there was a high positive correlation between muscle synergies and clinical scale scores in high-functioning patients, and the significance gradually emerged with treatment, highlighting the potential of muscle synergy plasticity as a valuable tool for monitoring rehabilitation progress. The potential of this study was also demonstrated for elucidating the physiological mechanisms underlying motor function reconstruction within the central nervous system, which is expected to promote the further application of muscle synergy in clinical assessment.

Details

Language :
English
ISSN :
15344320 and 15580210
Volume :
32
Database :
Directory of Open Access Journals
Journal :
IEEE Transactions on Neural Systems and Rehabilitation Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.5433582a3104e85b64194c0857d7d17
Document Type :
article
Full Text :
https://doi.org/10.1109/TNSRE.2024.3389022