Back to Search
Start Over
Dark-field radiography for the detection of bone microstructure changes in osteoporotic human lumbar spine specimens
- Source :
- European Radiology Experimental, Vol 8, Iss 1, Pp 1-11 (2024)
- Publication Year :
- 2024
- Publisher :
- SpringerOpen, 2024.
-
Abstract
- Abstract Background Dark-field radiography imaging exploits the wave character of x-rays to measure small-angle scattering on material interfaces, providing structural information with low radiation exposure. We explored the potential of dark-field imaging of bone microstructure to improve the assessment of bone strength in osteoporosis. Methods We prospectively examined 14 osteoporotic/osteopenic and 21 non-osteoporotic/osteopenic human cadaveric vertebrae (L2–L4) with a clinical dark-field radiography system, micro-computed tomography (CT), and spectral CT. Dark-field images were obtained in both vertical and horizontal sample positions. Bone microstructural parameters (trabecular number, Tb.N; trabecular thickness, Tb.Th; bone volume fraction, BV/TV; degree of anisotropy, DA) were measured using standard ex vivo micro-CT, while hydroxyapatite density was measured using spectral CT. Correlations were assessed using Spearman rank correlation coefficients. Results The measured dark-field signal was lower in osteoporotic/osteopenic vertebrae (vertical position, 0.23 ± 0.05 versus 0.29 ± 0.04, p
Details
- Language :
- English
- ISSN :
- 25099280
- Volume :
- 8
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- European Radiology Experimental
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.53b273cffa1d4d3c9d93ded4bfaa6615
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s41747-024-00524-3