Back to Search Start Over

Prediction and Classification of Alzheimer’s Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers

Authors :
Yubraj Gupta
Ramesh Kumar Lama
Goo-Rak Kwon
Alzheimer's Disease Neuroimaging Initiative
Michael W. Weiner
Paul Aisen
Michael Weiner
Ronald Petersen
Clifford R. Jack
William Jagust
John Q. Trojanowki
Arthur W. Toga
Laurel Beckett
Robert C. Green
Andrew J. Saykin
John Morris
Leslie M. Shaw
Zaven Khachaturian
Greg Sorensen
Maria Carrillo
Lew Kuller
Marc Raichle
Steven Paul
Peter Davies
Howard Fillit
Franz Hefti
David Holtzman
M. Marcel Mesulam
William Potter
Peter Snyder
Adam Schwartz
Tom Montine
Ronald G. Thomas
Michael Donohue
Sarah Walter
Devon Gessert
Tamie Sather
Gus Jiminez
Archana B. Balasubramanian
Jennifer Mason
Iris Sim
Danielle Harvey
Matthew Bernstein
Nick Fox
Paul Thompson
Norbert Schuff
Charles DeCArli
Bret Borowski
Jeff Gunter
Matt Senjem
Prashanthi Vemuri
David Jones
Kejal Kantarci
Chad Ward
Robert A. Koeppe
Norm Foster
Eric M. Reiman
Kewei Chen
Chet Mathis
Susan Landau
John C. Morris
Nigel J. Cairns
Erin Franklin
Lisa Taylor-Reinwald
Virginia Lee
Magdalena Korecka
Michal Figurski
Karen Crawford
Scott Neu
Tatiana M. Foroud
Steven Potkin
Li Shen
Kelley Faber
Sungeun Kim
Kwangsik Nho
Lean Thal
Leon Thal
Neil Buckholtz
Peter J. Snyder
Marilyn Albert
Richard Frank
John Hsiao
Jeffrey Kaye
Joseph Quinn
Lisa Silbert
Betty Lind
Raina Carter
Sara Dolen
Lon S. Schneider
Sonia Pawluczyk
Mauricio Becerra
Liberty Teodoro
Bryan M. Spann
James Brewer
Helen Vanderswag
Adam Fleisher
Judith L. Heidebrink
Joanne L. Lord
Sara S. Mason
Colleen S. Albers
David Knopman
Kris Johnson
Rachelle S. Doody
Javier Villanueva-Meyer
Valory Pavlik
Victoria Shibley
Munir Chowdhury
Susan Rountree
Mimi Dang
Yaakov Stern
Lawrence S. Honig
Karen L. Bell
Beau Ances
Maria Carroll
Mary L. Creech
Mark A. Mintun
Stacy Schneider
Angela Oliver
Daniel Marson
David Geldmacher
Marissa Natelson Love
Randall Griffith
David Clark
John Brockington
Erik Roberson
Hillel Grossman
Effie Mitsis
Raj C. Shah
Leyla deToledo-Morrell
Ranjan Duara
Maria T. Greig-Custo
Warren Barker
Chiadi Onyike
Daniel D'Agostino
Stephanie Kielb
Martin Sadowski
Mohammed O. Sheikh
Ulysse Anaztasia
Gaikwad Mrunalini
P. Murali Doraiswamy
Jeffrey R. Petrella
Salvador Borges-Neto
Terence Z. Wong
Edward Coleman
Steven E. Arnold
Jason H. Karlawish
David A. Wolk
Christopher M. Clark
Charles D. Smith
Greg Jicha
Peter Hardy
Partha Sinha
Elizabeth Oates
Gary Conrad
Oscar L. Lopez
MaryAnn Oakley
Donna M. Simpson
Anton P. Porsteinsson
Bonnie S. Goldstein
Kim Martin
Kelly M. Makino
M. Saleem Ismail
Connie Brand
Steven G. Potkin
Adrian Preda
Dana Nguyen
Kyle Womack
Dana Mathews
Mary Quiceno
Allan I. Levey
James J. Lah
Janet S. Cellar
Jeffrey M. Burns
Russell H. Swerdlow
William M. Brooks
Liana Apostolova
Kathleen Tingus
Ellen Woo
Daniel H.S. Silverman
Po H. Lu
George Bartzokis
Neill R Graff-Radford
Francine Parfitt
Kim Poki-Walker
Martin R. Farlow
Ann Marie Hake
Brandy R. Matthews
Jared R. Brosch
Scott Herring
Christopher H. van Dyck
Richard E. Carson
Martha G. MacAvoy
Pradeep Varma
Howard Chertkow
Howard Bergman
Chris Hosein
Sandra Black
Bojana Stefanovic
Curtis Caldwell
Ging-Yuek Robin Hsiung
Benita Mudge
Vesna Sossi
Howard Feldman
Michele Assaly
Elizabeth Finger
Stephen Pasternack
Irina Rachisky
Dick Trost
Andrew Kertesz
Charles Bernick
Donna Munic
Marek-Marsel Mesulam
Emily Rogalski
Kristine Lipowski
Sandra Weintraub
Borna Bonakdarpour
Diana Kerwin
Chuang-Kuo Wu
Nancy Johnson
Carl Sadowsky
Teresa Villena
Raymond Scott Turner
Kathleen Johnson
Brigid Reynolds
Reisa A. Sperling
Keith A. Johnson
Gad Marshall
Jerome Yesavage
Joy L. Taylor
Barton Lane
Allyson Rosen
Jared Tinklenberg
Marwan N. Sabbagh
Christine M. Belden
Sandra A. Jacobson
Sherye A. Sirrel
Neil Kowall
Ronald Killiany
Andrew E. Budson
Alexander Norbash
Patricia Lynn Johnson
Thomas O. Obisesan
Saba Wolday
Joanne Allard
Alan Lerner
Paula Ogrocki
Curtis Tatsuoka
Parianne Fatica
Evan Fletcher
Pauline Maillard
John Olichney
Charles DeCarli
Owen Carmichael
Smita Kittur
Michael Borrie
T-Y Lee
Rob Bartha
Sterling Johnson
Sanjay Asthana
Cynthia M. Carlsson
Pierre Tariot
Anna Burke
Ann Marie Milliken
Nadira Trncic
Stephanie Reeder
Vernice Bates
Horacio Capote
Michelle Rainka
Douglas W. Scharre
Maria Kataki
Brendan Kelley
Earl A. Zimmerman
Dzintra Celmins
Alice D. Brown
Godfrey D. Pearlson
Karen Blank
Karen Anderson
Laura A. Flashman
Marc Seltzer
Mary L. Hynes
Robert B. Santulli
Kaycee M. Sink
Gordineer Leslie
Jeff D. Williamson
Pradeep Garg
Franklin Watkins
Brian R. Ott
Geoffrey Tremont
Lori A. Daiello
Stephen Salloway
Paul Malloy
Stephen Correia
Howard J. Rosen
Bruce L. Miller
David Perry
Jacobo Mintzer
Kenneth Spicer
David Bachman
Stephen Pasternak
Irina Rachinsky
John Rogers
Dick Drost
Nunzio Pomara
Raymundo Hernando
Antero Sarrael
Susan K. Schultz
Karen Ekstam Smith
Hristina Koleva
Ki Won Nam
Hyungsub Shim
Norman Relkin
Gloria Chiang
Michael Lin
Lisa Ravdin
Amanda Smith
Balebail Ashok Raj
Kristin Fargher
Thomas Neylan
Jordan Grafman
Gessert Devon
Davis Melissa
Rosemary Morrison
Hayes Jacqueline
Finley Shannon
Kantarci Kejal
Ward Chad
Erin Householder
Crawford Karen
Neu Scott
Friedl Karl
Becerra Mauricio
Debra Fleischman
Konstantinos Arfanakis
Daniel Varon
Maria T Greig
Olga James
Bonnie Goldstein
Kimberly S. Martin
Dino Massoglia
Olga Brawman-Mintzer
Walter Martinez
Howard Rosen
Kelly Behan
Sterling C. Johnson
J. Jay Fruehling
Sandra Harding
Elaine R. Peskind
Eric C. Petrie
Gail Li
Jerome A. Yesavage
Ansgar J. Furst
Steven Chao
Scott Mackin
Rema Raman
Erin Drake
Mike Donohue
Gustavo Jimenez
Kelly Harless
Jennifer Salazar
Yuliana Cabrera
Lindsey Hergesheimer
Elizabeth Shaffer
Craig Nelson
David Bickford
Meryl Butters
Michelle Zmuda
Denise Reyes
Kelley M. Faber
Kelly N. Nudelman
Yiu Ho Au
Kelly Scherer
Daniel Catalinotto
Samuel Stark
Elise Ong
Dariella Fernandez
Source :
Frontiers in Computational Neuroscience, Vol 13 (2019)
Publication Year :
2019
Publisher :
Frontiers Media S.A., 2019.

Abstract

Alzheimer's disease (AD), including its mild cognitive impairment (MCI) phase that may or may not progress into the AD, is the most ordinary form of dementia. It is extremely important to correctly identify patients during the MCI stage because this is the phase where AD may or may not develop. Thus, it is crucial to predict outcomes during this phase. Thus far, many researchers have worked on only using a single modality of a biomarker for the diagnosis of AD or MCI. Although recent studies show that a combination of one or more different biomarkers may provide complementary information for the diagnosis, it also increases the classification accuracy distinguishing between different groups. In this paper, we propose a novel machine learning-based framework to discriminate subjects with AD or MCI utilizing a combination of four different biomarkers: fluorodeoxyglucose positron emission tomography (FDG-PET), structural magnetic resonance imaging (sMRI), cerebrospinal fluid (CSF) protein levels, and Apolipoprotein-E (APOE) genotype. The Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset was used in this study. In total, there were 158 subjects for whom all four modalities of biomarker were available. Of the 158 subjects, 38 subjects were in the AD group, 82 subjects were in MCI groups (including 46 in MCIc [MCI converted; conversion to AD within 24 months of time period], and 36 in MCIs [MCI stable; no conversion to AD within 24 months of time period]), and the remaining 38 subjects were in the healthy control (HC) group. For each image, we extracted 246 regions of interest (as features) using the Brainnetome template image and NiftyReg toolbox, and later we combined these features with three CSF and two APOE genotype features obtained from the ADNI website for each subject using early fusion technique. Here, a different kernel-based multiclass support vector machine (SVM) classifier with a grid-search method was applied. Before passing the obtained features to the classifier, we have used truncated singular value decomposition (Truncated SVD) dimensionality reduction technique to reduce high dimensional features into a lower-dimensional feature. As a result, our combined method achieved an area under the receiver operating characteristic (AU-ROC) curve of 98.33, 93.59, 96.83, 94.64, 96.43, and 95.24% for AD vs. HC, MCIs vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs subjects which are high relative to single modality results and other state-of-the-art approaches. Moreover, combined multimodal methods have improved the classification performance over the unimodal classification.

Details

Language :
English
ISSN :
16625188
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Frontiers in Computational Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.53b13610a6444389b74604f35fa24c80
Document Type :
article
Full Text :
https://doi.org/10.3389/fncom.2019.00072