Back to Search Start Over

Ascorbate oxidation by iron, copper and reactive oxygen species: review, model development, and derivation of key rate constants

Authors :
Jiaqi Shen
Paul T. Griffiths
Steven J. Campbell
Battist Utinger
Markus Kalberer
Suzanne E. Paulson
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract Ascorbic acid is among the most abundant antioxidants in the lung, where it likely plays a key role in the mechanism by which particulate air pollution initiates a biological response. Because ascorbic acid is a highly redox active species, it engages in a far more complex web of reactions than a typical organic molecule, reacting with oxidants such as the hydroxyl radical as well as redox-active transition metals such as iron and copper. The literature provides a solid outline for this chemistry, but there are large disagreements about mechanisms, stoichiometries and reaction rates, particularly for the transition metal reactions. Here we synthesize the literature, develop a chemical kinetics model, and use seven sets of laboratory measurements to constrain mechanisms for the iron and copper reactions and derive key rate constants. We find that micromolar concentrations of iron(III) and copper(II) are more important sinks for ascorbic acid (both AH2 and AH−) than reactive oxygen species. The iron and copper reactions are catalytic rather than redox reactions, and have unit stoichiometries: Fe(III)/Cu(II) + AH2/AH− + O2 → Fe(III)/Cu(II) + H2O2 + products. Rate constants are 5.7 × 104 and 4.7 × 104 M−2 s−1 for Fe(III) + AH2/AH− and 7.7 × 104 and 2.8 × 106 M−2 s−1 for Cu(II) + AH2/AH−, respectively.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.53a555c11cac48b0be1dacd8ef5ff865
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-86477-8