Back to Search Start Over

An interpretable model for landslide susceptibility assessment based on Optuna hyperparameter optimization and Random Forest

Authors :
Xin Xiao
Yi Zou
Jiangcheng Huang
Xuan Luo
Luyi Yang
Meng Li
Pengwu Yang
Xuan Ji
Yungang Li
Source :
Geomatics, Natural Hazards & Risk, Vol 15, Iss 1 (2024)
Publication Year :
2024
Publisher :
Taylor & Francis Group, 2024.

Abstract

AbstractThis study proposed an interpretable model that combines Random Forest (RF), Optuna hyperparameter optimization, and SHapley Additive exPlanations (SHAP) to achieve optimal landslide susceptibility evaluation and provide explanations in the northwest region of Yunnan Province in China. First, an inventory of 4447 landslides and 23 related factors was considered for the landslide susceptibility assessment. Subsequently, a hyperparameter-optimized RF model was developed using the Optuna framework and the training dataset to generate landslide susceptibility maps. The performance of the models were evaluated using accuracy (ACC), precision (PPV), recall (TPR), F1-score (F1), and the Area Under the Curve (AUC) based on the Receiver Operating Characteristic. Furthermore, the interpretability of the model was enhanced through the implementation of SHAP. The proposed model demonstrated outstanding performance on the test set, achieving an ACC of 0.7792, PPV of 0.7448, TPR of 0.8769, F1 of 0.8055, and an AUC of 0.8387. The interpretability analysis revealed that elevation, population density, distance from roads, and normalized difference vegetation index were the primary factors influencing landslide occurrences in the study area. This study provides a comprehensive framework for evaluating landslide susceptibility in specific regions and offers invaluable insights for the prevention and management of landslide disasters.

Details

Language :
English
ISSN :
19475705 and 19475713
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Geomatics, Natural Hazards & Risk
Publication Type :
Academic Journal
Accession number :
edsdoj.5390b6bdf8d4471915e95c4de5c494a
Document Type :
article
Full Text :
https://doi.org/10.1080/19475705.2024.2347421