Back to Search Start Over

Deep Learning for Predicting Winter Temperature in North China

Authors :
Liang Gao
Young-Min Yang
Qingqing Li
Yoo-Geun Ham
Jeong-Hwan Kim
Source :
Atmosphere, Vol 13, Iss 5, p 702 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

It is difficult to improve the seasonal prediction skill of winter temperature over North China, owing to the complex dynamics of East Asian winter and the relatively low prediction skill level of current climate models. Deep learning (DL) may be an informative and promising tool to enhance seasonal prediction, particularly in regions where the underlying mechanisms are not clear. Here, using a DL model based on the Convolutional Neural Network (CNN), we have found that the prediction skill for North China winter temperature (NCWT) can be extended up to five months by considering the remote impact of the Northeast Pacific sea-surface temperature (SST) on North China. Based on historical simulations of winter temperatures in North China, we selected six CMIP5 models with relatively small deviations for training the CNN, and the period chosen for training was 1852–1991. The ERA5 data during 1995–2017 were utilized to evaluate the performance of the CNN. Our CNN shows the best performance in a recent 10-year period (2008–2017), showing a significantly improved level of NCWT prediction skill with a correlation skill of 0.65 at a 5-month lead time, which is much better than the forecast skill of the state-of-the-art dynamic seasonal prediction system. Heat map analysis was used to explore the possible physical mechanisms associated with the NCWT anomaly from the perspective of the CNN; the results showed that the SST over the Northeast Pacific is highly relevant to NCWT prediction. The Northeast Pacific warming in the boreal summer is related to the development of the El Niño event in the coming winter, which may induce NCWT anomalies by atmospheric teleconnection. Climate model experiments support the role of Northeast Pacific warming in the boreal summer on NCWT. The improved capability for prediction from using the CNN may help to establish the energy policy for the coming winter and reduce the economic losses from extremely cold in North China.

Details

Language :
English
ISSN :
13050702 and 20734433
Volume :
13
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Atmosphere
Publication Type :
Academic Journal
Accession number :
edsdoj.537f946920cb403782d0b7b9260348b1
Document Type :
article
Full Text :
https://doi.org/10.3390/atmos13050702