Back to Search Start Over

Development of a prognostic signature of patients with esophagus adenocarcinoma by using immune-related genes

Authors :
Xiangxin Zhang
Liu Yang
Ming Kong
Jian Ma
Yutao Wei
Source :
BMC Bioinformatics, Vol 22, Iss 1, Pp 1-17 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Esophageal adenocarcinoma (EAC) is an aggressive malignancy with a poor prognosis. The immune-related genes (IRGs) are crucial to immunocytes tumor infiltration. This study aimed to construct a IRG-related prediction signature in EAC. Methods The related data of EAC patients and IRGs were obtained from the TCGA and ImmPort database, respectively. The cox regression analysis constructed the prediction signature and explored the transcription factors regulatory network through the Cistrome database. TIMER database and CIBERSORT analytical tool were utilized to explore the immunocytes infiltration analysis. Results The prediction signature with 12 IRGs (ADRM1, CXCL1, SEMG1, CCL26, CCL24, AREG, IL23A, UCN2, FGFR4, IL17RB, TNFRSF11A, and TNFRSF21) was constructed. Overall survival (OS) curves indicate that the survival rate of the high-risk group is significantly shorter than the low-risk group (P = 7.26e−07), and the AUC of 1-, 3- and 5- year survival prediction rates is 0.871, 0.924, and 0.961, respectively. Compared with traditional features, the ROC curve of the risk score in the EAC patients (0.967) is significant than T (0.57), N (0.738), M (0.568), and Stage (0.768). Moreover, multivariate Cox analysis and Nomogram of risk score are indicated that the 1-year and 3-year survival rates of patients are accurate by the combined analysis of the risk score, Sex, M stage, and Stage (The AUC of 1- and 3-years are 0.911, and 0.853). Conclusion The 12 prognosis-related IRGs might be promising therapeutic targets for EAC.

Details

Language :
English
ISSN :
14712105
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
edsdoj.53571bef349d4959b35f232b0d26b30a
Document Type :
article
Full Text :
https://doi.org/10.1186/s12859-021-04456-2