Back to Search Start Over

Human Tissue Angiotensin Converting Enzyme (ACE) Activity Is Regulated by Genetic Polymorphisms, Posttranslational Modifications, Endogenous Inhibitors and Secretion in the Serum, Lungs and Heart

Authors :
Viktor Bánhegyi
Attila Enyedi
Gábor Áron Fülöp
Attila Oláh
Ivetta Mányiné Siket
Csongor Váradi
Klaudia Bottyán
Mária Lódi
Alexandra Csongrádi
Azeem J. Umar
Miklós Fagyas
Dániel Czuriga
István Édes
Miklós Pólos
Béla Merkely
Zoltán Csanádi
Zoltán Papp
Gábor Szabó
Tamás Radovits
István Takács
Attila Tóth
Source :
Cells, Vol 10, Iss 7, p 1708 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Objective: Inhibitors of the angiotensin converting enzyme (ACE) are the primarily chosen drugs to treat heart failure and hypertension. Moreover, an imbalance in tissue ACE/ACE2 activity is implicated in COVID-19. In the present study, we tested the relationships between circulating and tissue (lung and heart) ACE levels in men. Methods: Serum, lung (n = 91) and heart (n = 72) tissue samples were collected from Caucasian patients undergoing lung surgery or heart transplantation. ACE I/D genotype, ACE concentration and ACE activity were determined from serum and tissue samples. Clinical parameters were also recorded. Results: A protocol for ACE extraction was developed for tissue ACE measurements. Extraction of tissue-localized ACE was optimal in a 0.3% Triton-X-100 containing buffer, resulting in 260 ± 12% higher ACE activity over detergent-free conditions. SDS or higher Triton-X-100 concentrations inhibited the ACE activity. Serum ACE concentration correlated with ACE I/D genotype (II: 166 ± 143 ng/mL, n = 19, ID: 198 ± 113 ng/mL, n = 44 and DD: 258 ± 109 ng/mL, n = 28, p < 0.05) as expected. In contrast, ACE expression levels in the lung tissue were approximately the same irrespective of the ACE I/D genotype (II: 1423 ± 1276 ng/mg, ID: 1040 ± 712 ng/mg and DD: 930 ± 1273 ng/mg, p > 0.05) in the same patients (values are in median ± IQR). Moreover, no correlations were found between circulating and lung tissue ACE concentrations and activities (Spearman’s p > 0.05). In contrast, a significant correlation was identified between ACE activities in serum and heart tissues (Spearman’s Rho = 0.32, p < 0.01). Finally, ACE activities in lung and the serum were endogenously inhibited to similar degrees (i.e., to 69 ± 1% and 53 ± 2%, respectively). Conclusion: Our data suggest that circulating ACE activity correlates with left ventricular ACE, but not with lung ACE in human. More specifically, ACE activity is tightly coordinated by genotype-dependent expression, endogenous inhibition and secretion mechanisms.

Details

Language :
English
ISSN :
20734409
Volume :
10
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Cells
Publication Type :
Academic Journal
Accession number :
edsdoj.533fd267c0a748e98c7b9988dae01145
Document Type :
article
Full Text :
https://doi.org/10.3390/cells10071708