Back to Search Start Over

Top-down estimates of biomass burning emissions of black carbon in the Western United States

Authors :
Y. H. Mao
Q. B. Li
D. Chen
L. Zhang
W.-M. Hao
K.-N. Liou
Source :
Atmospheric Chemistry and Physics, Vol 14, Iss 14, Pp 7195-7211 (2014)
Publication Year :
2014
Publisher :
Copernicus Publications, 2014.

Abstract

We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May–October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS) to improve the spatiotemporal distributions of the biomass burning BC emissions from the Global Fire Emissions Database (GFEDv2). The adjustment primarily shifts emissions from late to middle and early summer (a 33% decrease in September–October and a 56% increase in June–August) and leads to appreciable increases in modeled surface BC concentrations in early and middle summer, especially at the 1–2 and 2–3 km altitude ranges. We then conduct analytical inversions at both 2° × 2.5° and 0.5° × 0.667° (nested over North America) horizontal resolutions. The a posteriori biomass burning BC emissions for July–September are 31.7 Gg at 2° × 2.5° (an increase by a factor of 4.7) and 19.2 Gg at 0.5° × 0.667° (an increase by a factor of 2.8). The inversion results are rather sensitive to model resolution. The a posteriori biomass burning emissions at the two model resolutions differ by a factor of ~6 in California and the Southwest and by a factor of 2 in the Pacific Northwest. The corresponding a posteriori anthropogenic BC emissions are 9.1 Gg at 2° × 2.5° (a decrease of 48%) and 11.2 Gg at 0.5° × 0.667° (a decrease of 36%). Simulated surface BC concentrations with the a posteriori emissions capture the observed major fire episodes at most sites and the substantial enhancements at the 1–2 and 2–3 km altitude ranges. The a posteriori emissions also lead to large bias reductions (by ~30% on average at both model resolutions) in modeled surface BC concentrations and significantly better agreement with observations (increases in Taylor skill scores of 95% at 2° × 2.5° and 42 % at 0.5° × 0.667°).

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
14
Issue :
14
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.533e91d895aa47be9f0f2d022fc4353f
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-14-7195-2014