Back to Search
Start Over
Fractional porous medium and mean field equations in Besov spaces
- Source :
- Electronic Journal of Differential Equations, Vol 2014, Iss 199,, Pp 1-14 (2014)
- Publication Year :
- 2014
- Publisher :
- Texas State University, 2014.
-
Abstract
- In this article, we consider the evolution model $$ \partial_t{u} -\nabla\cdot(u\nabla Pu)=0,\quad Pu=(-\Delta)^{-s}u, \quad 0< s\leq 1,\; x\in\mathbb{R}^d,\; t>0. $$ We show that when $s\in[1/2,1)$, $\alpha>d+1$, $d\geq 2$, the equation has a unique local in time solution for any initial data in $B^\alpha_{1,\infty}$. Moreover, in the critical case $s=1$, the solution exists in $B^\alpha_{p,\infty}$, $2\leq p\leq\infty$, $\alpha> d/p$, $d\geq3$.
Details
- Language :
- English
- ISSN :
- 10726691
- Volume :
- 2014
- Issue :
- 199,
- Database :
- Directory of Open Access Journals
- Journal :
- Electronic Journal of Differential Equations
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.52e656053e44e0e978bfbd9b0305b87
- Document Type :
- article