Back to Search Start Over

Fractional porous medium and mean field equations in Besov spaces

Authors :
Xuhuan Zhou
Weiliang Xiao
Jiecheng Chen
Source :
Electronic Journal of Differential Equations, Vol 2014, Iss 199,, Pp 1-14 (2014)
Publication Year :
2014
Publisher :
Texas State University, 2014.

Abstract

In this article, we consider the evolution model $$ \partial_t{u} -\nabla\cdot(u\nabla Pu)=0,\quad Pu=(-\Delta)^{-s}u, \quad 0< s\leq 1,\; x\in\mathbb{R}^d,\; t>0. $$ We show that when $s\in[1/2,1)$, $\alpha>d+1$, $d\geq 2$, the equation has a unique local in time solution for any initial data in $B^\alpha_{1,\infty}$. Moreover, in the critical case $s=1$, the solution exists in $B^\alpha_{p,\infty}$, $2\leq p\leq\infty$, $\alpha> d/p$, $d\geq3$.

Details

Language :
English
ISSN :
10726691
Volume :
2014
Issue :
199,
Database :
Directory of Open Access Journals
Journal :
Electronic Journal of Differential Equations
Publication Type :
Academic Journal
Accession number :
edsdoj.52e656053e44e0e978bfbd9b0305b87
Document Type :
article