Back to Search Start Over

Calmodulin Contributes to Lipolysis and Inflammatory Responses in Clinical Ketosis Cows through the TLR4/IKK/NF-κB Pathway

Authors :
Jinshui Chang
Zhijie Wang
Yu Hao
Yuxi Song
Cheng Xia
Source :
Animals, Vol 14, Iss 11, p 1678 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Clinical ketosis is a detrimental metabolic disease in dairy cows, often accompanied by severe lipolysis and inflammation in adipose tissue. Our previous study suggested a 2.401-fold upregulation in the calmodulin (CaM) level in the adipose tissue of cows with clinical ketosis. Therefore, we hypothesized that CaM may regulate lipolysis and inflammatory responses in cows with clinical ketosis. To verify the hypothesis, we conducted a thorough veterinary assessment of clinical symptoms and serum β-hydroxybutyrate (BHB) concentration. Subsequently, we collected subcutaneous adipose tissue samples from six healthy and six clinically ketotic Holstein cows at 17 ± 4 days postpartum. Commercial kits were used to test the abundance of BHB, non-esterified fatty acid (NEFA), the liver function index (LFI), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). We found that cows with clinical ketosis exhibited higher levels of BHB, NEFA, LFI, IL-6, IL-1β, TNF-α, and lower glucose levels than healthy cows. Furthermore, the abundance of CaM, toll-like receptor 4 (TLR4), inhibitor of nuclear factor κB kinase subunit β (IKK), phosphorylated nuclear factor κB p65/nuclear factor κB p65 (p-NF-κB p65/NF-κB p65), adipose triacylglycerol lipase (ATGL), and phosphorylated hormone-sensitive lipase/hormone-sensitive lipase (p-HSL/HSL) was increased, while that of perilipin-1 (PLIN1) was decreased in the adipose tissue of cows with clinical ketosis. To investigate the mechanism underlying the responses, we isolated the primary bovine adipocytes from the adipose tissue of healthy cows and induced the inflammatory response mediated by TLR4/IKK/NF-κB p65 with lipopolysaccharide (LPS). Additionally, we treated the primary bovine adipocytes with CaM overexpression adenovirus and CaM small interfering RNA. In vitro, LPS upregulated the abundance of TLR4, IKK, p-NF-κB p65, ATGL, p-HSL/HSL, and CaM and downregulated PLIN1. Furthermore, CaM silencing downregulated the abundance of LPS-activated p-HSL/HSL, TLR4, IKK, and p-NF-κB p65 and upregulated PLIN1 in bovine adipocytes, except for ATGL. However, CaM overexpression upregulated the abundance of LPS-activated p-HSL/HSL, TLR4, IKK, and p-NF-κB p65 and downregulated PLIN1 expression in bovine adipocytes. These data suggest that CaM promotes lipolysis in adipocytes through HSL and PINL1 while activating the TLR4/IKK/NF-κB inflammatory pathway to stimulate an inflammatory response. There is a positive feedback loop between CaM, lipolysis, and inflammation. Inhibiting CaM may act as an adaptive mechanism to alleviate metabolic dysregulation in adipose tissue, thereby relieving lipolysis and inflammatory responses.

Details

Language :
English
ISSN :
20762615
Volume :
14
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Animals
Publication Type :
Academic Journal
Accession number :
edsdoj.52bb44dd8ac14d6a9f5329a28835adf2
Document Type :
article
Full Text :
https://doi.org/10.3390/ani14111678