Back to Search Start Over

Fencing Can Alter Gene Flow of Asian Elephant Populations within Protected Areas

Authors :
Jean-Philippe Puyravaud
Samuel A. Cushman
P. Anuradha Reddy
Durairaj Boominathan
Reeta Sharma
Neelakantan Arumugam
Kanagaraj Muthamizh Selvan
Nagarathinam Mohanraj
Sedupathy Arulmozhi
Abdul Rahim
Tamanna Kalam
Rahul De
Swati Udayraj
Andrea Luis
Muneer Ul Islam Najar
Kothandapani Raman
Bawa Mothilal Krishnakumar
Surendra Prakash Goyal
Priya Davidar
Source :
Conservation, Vol 2, Iss 4, Pp 709-725 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The Asian elephant is mostly confined to mountainous ranges and therefore risks population fragmentation if hard protected area (PA) boundaries near steep slopes prevent movement. We tested whether elephant gene flow is (i) controlled by slope and (ii) affected by the interplay between barriers and slope. We used 176 unique genotypes obtained non-invasively from fresh elephant dung to assess individual-by-individual genetic distance across the Western Ghats of India, a biodiversity hotspot. To assess landscape distance, 36 resistance models were produced by transforming a slope raster. Core areas and corridors were calculated from the raster that provided the best correlation between the genetic and distance matrices. The influence of the closure of PAs on gene flow was examined for one region, the Nilgiri Biosphere Reserve. The best resistance raster obtained by transforming the slope occupancy model was better than Euclidean distance for explaining genetic distance, indicating that slope partially controls gene flow. Fencing elephant PAs on hilly terrain reduces core areas and disrupts corridors. Consequently, hard PA boundaries abutting slopes can fragment elephant populations, but this can be ameliorated by protecting the adjacent flatter terrain.

Details

Language :
English
ISSN :
26737159 and 25126717
Volume :
2
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Conservation
Publication Type :
Academic Journal
Accession number :
edsdoj.52878a3ba1c94247a25126717b78b9dc
Document Type :
article
Full Text :
https://doi.org/10.3390/conservation2040046