Back to Search
Start Over
Structural (XRD) Characterization and an Analysis of H-Bonding Motifs in Some Tetrahydroxidohexaoxidopentaborate(1-) Salts of N-Substituted Guanidinium Cations
- Source :
- Molecules, Vol 28, Iss 7, p 3273 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- The synthesis and characterization of six new substituted guanidium tetrahydroxidohexaoxidopentaborate(1-) salts are reported: [C(NH2)2(NHMe)][B5O6(OH)4]·H2O (1), [C(NH2)2(NH{NH2})][B5O6(OH)4] (2), [C(NH2)2(NMe2)][B5O6(OH)4] (3), [C(NH2)(NMe2)2][B5O6(OH)4] (4), [C(NHMe)(NMe2)2][B5O6(OH)4]·B(OH)3 (5), and [TBDH][B5O6(OH)4] (6) (TBD = 1,5,7-triazabicyclo [4.4.0]dec-5-ene). Compounds 1–6 were prepared as crystalline salts from basic aqueous solution via self-assembly processes from B(OH)3 and the appropriate substituted cation. Compounds 1–6 were characterized by spectroscopic (NMR and IR) and by single-crystal XRD studies. A thermal (TGA) analysis on compounds 1–3 and 6 demonstrated that they thermally decomposed via a multistage process to B2O3 at >650 °C. The low temperature stage (2O. Reactant stoichiometry, solid-state packing, and H-bonding interactions are all important in assembling these structures. An analysis of H-bonding motifs in known unsubstituted guanidinium salts [C(NH2)3]2[B4O5(OH)4]·2H2O, [C(NH2)3][B5O6(OH)4]·H2O, and [C(NH2)3]3[B9O12(OH)6] and in compounds 1–6 revealed that two important H-bonding R22(8) motifs competed to stabilize the observed structures. The guanidinium cation formed charge-assisted pincer cation–anion H-bonded rings as a major motif in [C(NH2)3]2[B4O5(OH)4]·2H2O and [C(NH2)3]3[B9O12(OH)6], whereas the anion–anion ring motif was dominant in [C(NH2)3][B5O6(OH)4]·H2O and in compounds 1–6. This behaviour was consistent with the stoichiometry of the salt and packing effects also strongly influencing their solid-state structures.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 28
- Issue :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5267861504bd48a598f4ed380fa15dbe
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules28073273