Back to Search Start Over

Particle dynamics and Lie-algebraic type of non-commutativity of space–time

Authors :
Partha Nandi
Sayan Kumar Pal
Ravikant Verma
Source :
Nuclear Physics B, Vol 935, Iss , Pp 183-197 (2018)
Publication Year :
2018
Publisher :
Elsevier, 2018.

Abstract

In this paper, we present the results of our investigation relating particle dynamics and non-commutativity of space–time by using Dirac's constraint analysis. In this study, we re-parameterise the time t=t(τ) along with x=x(τ) and treat both as configuration space variables. Here, τ is a monotonic increasing parameter and the system evolves with this parameter. After constraint analysis, we find the deformed Dirac brackets similar to the κ-deformed space–time and also, get the deformed Hamilton's equations of motion. Moreover, we study the effect of non-commutativity on the generators of Galilean group and Poincare group and find undeformed form of the algebra. Also, we work on the extended space analysis in the Lagrangian formalism. We find the primary as well as the secondary constraints. Strikingly on calculating the Dirac brackets among the phase space variables, we obtain the classical version of κ-Minkowski algebra.

Details

Language :
English
ISSN :
05503213
Volume :
935
Issue :
183-197
Database :
Directory of Open Access Journals
Journal :
Nuclear Physics B
Publication Type :
Academic Journal
Accession number :
edsdoj.525f25679904465aa7f6332e242d49a4
Document Type :
article
Full Text :
https://doi.org/10.1016/j.nuclphysb.2018.08.008