Back to Search Start Over

Bayesian credible subgroup identification for treatment effectiveness in time-to-event data.

Authors :
Duy Ngo
Richard Baumgartner
Shahrul Mt-Isa
Dai Feng
Jie Chen
Patrick Schnell
Source :
PLoS ONE, Vol 15, Iss 2, p e0229336 (2020)
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

Due to differential treatment responses of patients to pharmacotherapy, drug development and practice in medicine are concerned with personalized medicine, which includes identifying subgroups of population that exhibit differential treatment effect. For time-to-event data, available methods only focus on detecting and testing treatment-by-covariate interactions and may not consider multiplicity. In this work, we introduce the Bayesian credible subgroups approach for time-to-event endpoints. It provides two bounding subgroups for the true benefiting subgroup: one which is likely to be contained by the benefiting subgroup and one which is likely to contain the benefiting subgroup. A personalized treatment effect is estimated by two common measures of survival time: the hazard ratio and restricted mean survival time. We apply the method to identify benefiting subgroups in a case study of prostate carcinoma patients and a simulated large clinical dataset.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
2
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.5228bcb3e2d4437ea842319c5a2ce7ac
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0229336