Back to Search Start Over

Heteroatom doping enables hydrogen spillover via H+/e− diffusion pathways on a non-reducible metal oxide

Authors :
Kazuki Shun
Kohsuke Mori
Takumi Kidawara
Satoshi Ichikawa
Hiromi Yamashita
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Hydrogen spillover, the simultaneous diffusion of protons (H+) and electrons (e−) is considered to be applicable to ubiquitous technologies related to hydrogen but limited to over reducible metal oxides. The present work demonstrates that a non-reducible MgO with heteroatom Al dopants (Al–MgO) allows hydrogen spillover in the same way as reducible metal oxides. Furthermore, a H+ storage capacity of this material owing to hydrogen spillover is more than three times greater than those of various standard metal oxides based on H+ transport channels within its bulk region. Atomic hydrogen diffuses over the non-reducible Al–MgO produces active H+-e− pairs, as also occurs on reducible metal oxides, to enhance the catalytic performance of Ni during CO2 hydrogenation. The H+ and e− diffusion pathways generated by the heteroatom Al doping are disentangled based on systematic characterizations and calculations. This work provides a new strategy for designing functional materials intended to hydrogen spillover for diverse applications in a future hydrogen-based society.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.51d19611ddaf49baaa9aeac98e6fe88c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-50217-z