Back to Search Start Over

Prediction Models for Agonists and Antagonists of Molecular Initiation Events for Toxicity Pathways Using an Improved Deep-Learning-Based Quantitative Structure–Activity Relationship System

Authors :
Yasunari Matsuzaka
Shin Totoki
Kentaro Handa
Tetsuyoshi Shiota
Kota Kurosaki
Yoshihiro Uesawa
Source :
International Journal of Molecular Sciences, Vol 22, Iss 19, p 10821 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

In silico approaches have been studied intensively to assess the toxicological risk of various chemical compounds as alternatives to traditional in vivo animal tests. Among these approaches, quantitative structure–activity relationship (QSAR) analysis has the advantages that it is able to construct models to predict the biological properties of chemicals based on structural information. Previously, we reported a deep learning (DL) algorithm-based QSAR approach called DeepSnap-DL for high-performance prediction modeling of the agonist and antagonist activity of key molecules in molecular initiating events in toxicological pathways using optimized hyperparameters. In the present study, to achieve high throughput in the DeepSnap-DL system–which consists of the preparation of three-dimensional molecular structures of chemical compounds, the generation of snapshot images from the three-dimensional chemical structures, DL, and statistical calculations—we propose an improved DeepSnap-DL approach. Using this improved system, we constructed 59 prediction models for the agonist and antagonist activity of key molecules in the Tox21 10K library. The results indicate that modeling of the agonist and antagonist activity with high prediction performance and high throughput can be achieved by optimizing suitable parameters in the improved DeepSnap-DL system.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
22
Issue :
19
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.51c1a96ffa0440dd9eddaa0d11ecc894
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms221910821