Back to Search Start Over

Natural language processing system for rapid detection and intervention of mental health crisis chat messages

Authors :
Akshay Swaminathan
Iván López
Rafael Antonio Garcia Mar
Tyler Heist
Tom McClintock
Kaitlin Caoili
Madeline Grace
Matthew Rubashkin
Michael N. Boggs
Jonathan H. Chen
Olivier Gevaert
David Mou
Matthew K. Nock
Source :
npj Digital Medicine, Vol 6, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Patients experiencing mental health crises often seek help through messaging-based platforms, but may face long wait times due to limited message triage capacity. Here we build and deploy a machine-learning-enabled system to improve response times to crisis messages in a large, national telehealth provider network. We train a two-stage natural language processing (NLP) system with key word filtering followed by logistic regression on 721 electronic medical record chat messages, of which 32% are potential crises (suicidal/homicidal ideation, domestic violence, or non-suicidal self-injury). Model performance is evaluated on a retrospective test set (4/1/21–4/1/22, N = 481) and a prospective test set (10/1/22–10/31/22, N = 102,471). In the retrospective test set, the model has an AUC of 0.82 (95% CI: 0.78–0.86), sensitivity of 0.99 (95% CI: 0.96–1.00), and PPV of 0.35 (95% CI: 0.309–0.4). In the prospective test set, the model has an AUC of 0.98 (95% CI: 0.966–0.984), sensitivity of 0.98 (95% CI: 0.96–0.99), and PPV of 0.66 (95% CI: 0.626–0.692). The daily median time from message receipt to crisis specialist triage ranges from 8 to 13 min, compared to 9 h before the deployment of the system. We demonstrate that a NLP-based machine learning model can reliably identify potential crisis chat messages in a telehealth setting. Our system integrates into existing clinical workflows, suggesting that with appropriate training, humans can successfully leverage ML systems to facilitate triage of crisis messages.

Details

Language :
English
ISSN :
23986352
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Digital Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.5183d274f50d4c218f6598b4aaaee6cf
Document Type :
article
Full Text :
https://doi.org/10.1038/s41746-023-00951-3