Back to Search Start Over

Gonadal Transcriptome Analysis and Sequence Characterization of Sex-Related Genes in Cranoglanis bouderius

Authors :
Dongjie Wang
Zhengkun Pan
Guoxia Wang
Bin Ye
Qiujie Wang
Zhiheng Zuo
Jixing Zou
Shaolin Xie
Source :
International Journal of Molecular Sciences, Vol 23, Iss 24, p 15840 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

In China, the Cranoglanis bouderius is classified as a national class II-protected animal. The development of C. bouderius populations has been affected by a variety of factors over the past few decades, with severe declines occurring. Considering the likelihood of continued population declines of the C. bouderius in the future, it is critical to investigate the currently unknown characteristics of gonadal differentiation and sex-related genes for C. bouderius conservation. In this study, the Illumina sequencing platform was used to sequence the gonadal transcriptome of the C. bouderius to identify the pathways and genes related to gonadal development and analyze the expression differences in the gonads. A total of 12,002 DEGs were identified, with 7220 being significantly expressed in the ovary and 4782 being significantly expressed in the testis. According to the functional enrichment results, the cell cycle, RNA transport, apoptosis, Wnt signaling pathway, p53 signaling pathway, and prolactin signaling pathway play important roles in sex development in the C. bouderius. Furthermore, the sequence characterization and evolutionary analysis revealed that AMH, DAX1, NANOS1, and AR of the C. bouderius are highly conserved. Specifically, the qRT-PCR results from various tissues showed significant differences in AMH, DAX1, NANOS1, and AR expression levels in the gonads of both sexes of C. bouderius. These analyses indicated that AMH, DAX1, NANOS1, and AR may play important roles in the differentiation and development of C. bouderius gonads. To our best knowledge, this study is the first to analyze the C. bouderius gonadal transcriptome and identify the structures of sex-related genes, laying the foundation for future research.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
23
Issue :
24
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.5163aa5d94dab96daf95202e4978b
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms232415840