Back to Search
Start Over
Insights into Triazolylidene Ligands Behaviour at a Di-Iron Site Related to [FeFe]-Hydrogenases
- Source :
- Molecules, Vol 27, Iss 15, p 4700 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- The behaviour of triazolylidene ligands coordinated at a {Fe2(CO)5(µ-dithiolate)} core related to the active site of [FeFe]-hydrogenases have been considered to determine whether such carbenes may act as redox electron-reservoirs, with innocent or non-innocent properties. A novel complex featuring a mesoionic carbene (MIC) [Fe2(CO)5(Pmpt)(µ-pdt)] (1; Pmpt = 1-phenyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene; pdt = propanedithiolate) was synthesized and characterized by IR, 1H, 13C{1H} NMR spectroscopies, elemental analyses, X-ray diffraction, and cyclic voltammetry. Comparison with the spectroscopic characteristics of its analogue [Fe2(CO)5(Pmbt)(µ-pdt)] (2; Pmbt = 1-phenyl-3-methyl-4-butyl-1,2,3-triazol-5-ylidene) showed the effect of the replacement of a n-butyl by a phenyl group in the 1,2,3-triazole heterocycle. A DFT study was performed to rationalize the electronic behaviour of 1, 2 upon the transfer of two electrons and showed that such carbenes do not behave as redox ligands. With highly perfluorinated carbenes, electronic communication between the di-iron site and the triazole cycle is still limited, suggesting low redox properties of MIC ligands used in this study. Finally, although the catalytic performances of 2 towards proton reduction are weak, the protonation process after a two-electron reduction of 2 was examined by DFT and revealed that the protonation process is favoured by S-protonation but the stabilized diprotonated intermediate featuring a {Fe-H⋯H-S} interaction does not facilitate the release of H2 and may explain low efficiency towards HER (Hydrogen Evolution Reaction).
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 27
- Issue :
- 15
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.515cbabf07444a58bc612e4e4fce5348
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules27154700