Back to Search Start Over

Proteomic analysis of the urothelial cancer landscape

Authors :
Franz F. Dressler
Falk Diedrichs
Deema Sabtan
Sofie Hinrichs
Christoph Krisp
Timo Gemoll
Martin Hennig
Paulina Mackedanz
Mareile Schlotfeldt
Hannah Voß
Anne Offermann
Jutta Kirfel
Marie C. Roesch
Julian P. Struck
Mario W. Kramer
Axel S. Merseburger
Christian Gratzke
Dominik S. Schoeb
Arkadiusz Miernik
Hartmut Schlüter
Ulrich Wetterauer
Roman Zubarev
Sven Perner
Philipp Wolf
Ákos Végvári
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-19 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Urothelial bladder cancer (UC) has a wide tumor biological spectrum with challenging prognostic stratification and relevant therapy-associated morbidity. Most molecular classifications relate only indirectly to the therapeutically relevant protein level. We improve the pre-analytics of clinical samples for proteome analyses and characterize a cohort of 434 samples with 242 tumors and 192 paired normal mucosae covering the full range of UC. We evaluate sample-wise tumor specificity and rank biomarkers by target relevance. We identify robust proteomic subtypes with prognostic information independent from histopathological groups. In silico drug prediction suggests efficacy of several compounds hitherto not in clinical use. Both in silico and in vitro data indicate predictive value of the proteomic clusters for these drugs. We underline that proteomics is relevant for personalized oncology and provide abundance and tumor specificity data for a large part of the UC proteome ( www.cancerproteins.org ).

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.5134170881c84f2485111eb97cd4a685
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-48096-5