Back to Search Start Over

The Kinematic Analysis of a Wind Turbine Climbing Robot Mechanism

Authors :
Jui-Hung Liu
Kathleen Ebora Padrigalan
Source :
Applied Sciences, Vol 12, Iss 3, p 1210 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The emergence of renewable energy offers opportunities for academia and the industry to conduct scientific research and innovative technological developments on wind turbine climbing robots. These robots were developed to carry out specialized application tasks, such as in-situ inspection and maintenance of wind turbine physical structure. This paper presents a scaled-down prototype design of a climbing robot for wind turbine maintenance and its kinematic modeling. The winding mechanism is the key feature for providing enough adhesion force to support the climbing robot and needs to adapt to the different diameters of the wind turbine tower, as it climbs through a circular truncated cone shape. A climbing model is then considered, using four mecanum wheels for maneuverability of the different movement states up-down, rotation, and spiral as it climbs the wind turbine tower. The design of the wind turbine climbing robot was modeled in SketchUp and the motion states were implemented in MATLAB for the climbing performance capabilities of the driving wheels of the robot. Based on the theoretical results of motion characteristics, the scaled-down prototype design of a climbing robot possesses maneuverability of motion and is able to predict the robot’s performance. The contribution of this paper is intended to provide a basis for the new transformative climbing robot design and effectiveness of the mecanum wheel for robot motion.

Details

Language :
English
ISSN :
20763417
Volume :
12
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.512c00f5d7e6480689b1c78931c277f7
Document Type :
article
Full Text :
https://doi.org/10.3390/app12031210