Back to Search
Start Over
Torus quotient of the Grassmannian $G_{n,2n}$
- Source :
- Comptes Rendus. Mathématique, Vol 361, Iss G9, Pp 1499-1509 (2023)
- Publication Year :
- 2023
- Publisher :
- Académie des sciences, 2023.
-
Abstract
- Let $G_{n,2n}$ be the Grassmannian parameterizing the $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The Picard group of $G_{n,2n}$ is generated by a unique ample line bundle $\mathcal{O}(1)$. Let $T$ be a maximal torus of $\mathrm{SL}(2n,\mathbb{C})$ which acts on $G_{n,2n}$ and $\mathcal{O}(1)$. By [10, Theorem 3.10, p. 764], $2$ is the minimal integer $k$ such that $\mathcal{O}(k)$ descends to the GIT quotient. In this article, we prove that the GIT quotient of $G_{n,2n}$ ($n\ge 3$) by $T$ with respect to $\mathcal{O}(2)=\mathcal{O}(1)^{\otimes 2}$ is not projectively normal when polarized with the descent of $\mathcal{O}(2)$.
Details
- Language :
- English, French
- ISSN :
- 17783569
- Volume :
- 361
- Issue :
- G9
- Database :
- Directory of Open Access Journals
- Journal :
- Comptes Rendus. Mathématique
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.50f56942386e4d6a84241c81adc1092e
- Document Type :
- article
- Full Text :
- https://doi.org/10.5802/crmath.501