Back to Search Start Over

Possible route to efficient thermoelectric applications in a driven fractal network

Authors :
Kallol Mondal
Sudin Ganguly
Santanu K. Maiti
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract An essential attribute of many fractal structures is self-similarity. A Sierpinski gasket (SPG) triangle is a promising example of a fractal lattice that exhibits localized energy eigenstates. In the present work, for the first time we establish that a mixture of both extended and localized energy eigenstates can be generated yeilding mobility edges at multiple energies in presence of a time-periodic driving field. We obtain several compelling features by studying the transmission and energy eigenvalue spectra. As a possible application of our new findings, different thermoelectric properties are discussed, such as electrical conductance, thermopower, thermal conductance due to electrons and phonons. We show that our proposed method indeed exhibits highly favorable thermoelectric performance. The time-periodic driving field is assumed through an arbitrarily polarized light, and its effect is incorporated via Floquet-Bloch ansatz. All transport phenomena are worked out using Green’s function formalism following the Landauer–Büttiker prescription.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.50a340856af24be0b3848420b2310cab
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-96592-1