Back to Search
Start Over
Optimal fermentation conditions for growth and recombinant protein production in Pichia pastoris: Strain selection, ploidy level and carbon source
- Source :
- Current Research in Food Science, Vol 9, Iss , Pp 100840- (2024)
- Publication Year :
- 2024
- Publisher :
- Elsevier, 2024.
-
Abstract
- High-cell-density fermentation is a critical aspect of industrial protein production, requiring the selection of an optimal growth medium and carbon source. Pichia pastoris, a methylotrophic yeast, has been established as a widespread recombinant protein expression system in the food and pharmaceutical industries. The primary objective of this work was to create a superior platform for producing alternative proteins thus contributing to future innovation in these sectors. This study compared three wild-type strains, with two of them also analyzed in their diploid versions, using shake flasks and bioreactors. It investigated glucose and glycerol as carbon sources using mCherry as a protein model. Glycerol emerged as the preferred carbon source, resulting in over 40% increase in biomass concentrations compared to glucose across all strains. Notably, wild-type strain Y-7556 reached an exceptional biomass concentration of 244 g DCW/L in just 48 h, the highest reported to date, highlighting the potential of high-cell-density fermentation in P. pastoris. Regarding protein expression, the diploid version of Y-11430 produced >43% of purified mCherry protein after 123 h of fermentation, compared to the haploid counterpart. Our findings underscore the advantages of diploid strains, optimized fermentation media, and carbon source selection, effectively addressing crucial gaps in the literature.
Details
- Language :
- English
- ISSN :
- 26659271
- Volume :
- 9
- Issue :
- 100840-
- Database :
- Directory of Open Access Journals
- Journal :
- Current Research in Food Science
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.5066973eff44d7997b3876f113d1348
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.crfs.2024.100840