Back to Search Start Over

Development and validation of predictive models for myopia onset and progression using extensive 15-year refractive data in children and adolescents

Authors :
Jing Zhao
Yanze Yu
Yiming Li
Feng Li
Zhe Zhang
Weijun Jian
Zhi Chen
Yang Shen
Xiaoying Wang
Zhengqiang Ye
Chencui Huang
Xingtao Zhou
Source :
Journal of Translational Medicine, Vol 22, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Global myopia prevalence poses a substantial public health burden with vision-threatening complications, necessitating effective prevention and control strategies. Precise prediction of spherical equivalent (SE), myopia, and high myopia onset is vital for proactive clinical interventions. Methods We reviewed electronic medical records of pediatric and adolescent patients who underwent cycloplegic refraction measurements at the Eye & Ear, Nose, and Throat Hospital of Fudan University between January 2005 and December 2019. Patients aged 3–18 years who met the inclusion criteria were enrolled in this study. To predict the SE and onset of myopia and high myopia in a specific year, two distinct models, random forest (RF) and the gradient boosted tree algorithm (XGBoost), were trained and validated based on variables such as age at baseline, and SE at various intervals. Outputs included SE, the onset of myopia, and high myopia up to 15 years post-initial examination. Age-stratified analyses and feature importance assessments were conducted to augment the clinical significance of the models. Results The study enrolled 88,250 individuals with 408,255 refraction records. The XGBoost-based SE prediction model consistently demonstrated robust and better performance than RF over 15 years, maintaining an R 2 exceeding 0.729, and a Mean Absolute Error ranging from 0.078 to 1.802 in the test set. Myopia onset prediction exhibited strong area under the curve (AUC) values between 0.845 and 0.953 over 15 years, and high myopia onset prediction showed robust AUC values (0.807–0.997 over 13 years, with the 14th year at 0.765), emphasizing the models' effectiveness across age groups and temporal dimensions on the test set. Additionally, our classification models exhibited excellent calibration, as evidenced by consistently low brier score values, all falling below 0.25. Moreover, our findings underscore the importance of commencing regular examinations at an early age to predict high myopia. Conclusions The XGBoost predictive models exhibited high accuracy in predicting SE, onset of myopia, and high myopia among children and adolescents aged 3–18 years. Our findings emphasize the importance of early and regular examinations at a young age for predicting high myopia, thereby providing valuable insights for clinical practice.

Details

Language :
English
ISSN :
14795876
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Translational Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.506576f9145444d4990e2d73574c9113
Document Type :
article
Full Text :
https://doi.org/10.1186/s12967-024-05075-0