Back to Search Start Over

Telocytes reduce oxidative stress by downregulating DUOX2 expression in inflamed lungs of mice

Authors :
Tang Haihong
Liang Tao
Zhou Yile
Ju Huihui
Song Dongli
Fang Hao
Source :
Acta Biochimica et Biophysica Sinica, Vol 54, Pp 574-582 (2022)
Publication Year :
2022
Publisher :
China Science Publishing & Media Ltd., 2022.

Abstract

Telocytes (TCs), a novel type of interstitial cells, have been found to participate in tissue protection and repair. In this study, we investigated the antioxidative effects of TCs in inflamed lungs of mice. Acute respiratory distress syndrome (ARDS) mice were used as models of inflamed lungs of mice. Gene sequencing was used to screen the differentially expressed miRNAs in TCs after lipopolysaccharide (LPS) stimulation. AntagomiR-146a-5p-pretreated TCs were first injected into mice, and antioxidant activity of TCs was estimated. TCs, RAW264.7 cells, and MLE-12 cells were collected for the detection of expressions of NOX1–4, DUOX1–2, SOD1–3, GPX1–2, CAT, Nrf2, miR-146a-5p, and miR-21a-3p after LPS stimulation. Silencing miRNAs were delivered to examine the involved signaling pathways. Oxidative stress was examined by measuring malondialdehyde (MDA) levels. We found that microRNA-146a-5p and microRNA-21a-3p were upregulated in TCs after LPS stimulation. ARDS mice that were preinfused with TCs had lower lung tissue injury scores, lung wet-dry ratios, white blood cell counts in alveolar lavage fluid and lower MDA concentrations in lung tissue. However, in antagomiR-146a-5p-pretreated ARDS mice, the infusion of TCs caused no corresponding changes. After LPS stimulation, DUOX2 and MDA concentrations were downregulated in TCs, while DUOX2 was restored by antagomiR-146a-5p in TCs. Dual-luciferase reporter assay confirmed that CREB1 was downregulated by miR-146a-5p, while DUOX2 was downregulated by CREB1, which was confirmed by treating TCs with a specific CREB1 inhibitor. This study demonstrates that LPS stimulation upregulates miR-146a-5p in TCs, which downregulates the CREB1/DUOX2 pathway, resulting in a decrease in oxidative stress in cultured TCs. TCs reduce LPS-induced oxidative stress by decreasing DUOX2 in inflamed lungs of mice.

Details

Language :
English
ISSN :
16729145
Volume :
54
Database :
Directory of Open Access Journals
Journal :
Acta Biochimica et Biophysica Sinica
Publication Type :
Academic Journal
Accession number :
edsdoj.505ff2f868e24479a8466b1b037562b6
Document Type :
article
Full Text :
https://doi.org/10.3724/abbs.2022017