Back to Search Start Over

Unified Generative Adversarial Networks for Multidomain Fingerprint Presentation Attack Detection

Authors :
Soha B. Sandouka
Yakoub Bazi
Haikel Alhichri
Naif Alajlan
Source :
Entropy, Vol 23, Iss 8, p 1089 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

With the rapid growth of fingerprint-based biometric systems, it is essential to ensure the security and reliability of the deployed algorithms. Indeed, the security vulnerability of these systems has been widely recognized. Thus, it is critical to enhance the generalization ability of fingerprint presentation attack detection (PAD) cross-sensor and cross-material settings. In this work, we propose a novel solution for addressing the case of a single source domain (sensor) with large labeled real/fake fingerprint images and multiple target domains (sensors) with only few real images obtained from different sensors. Our aim is to build a model that leverages the limited sample issues in all target domains by transferring knowledge from the source domain. To this end, we train a unified generative adversarial network (UGAN) for multidomain conversion to learn several mappings between all domains. This allows us to generate additional synthetic images for the target domains from the source domain to reduce the distribution shift between fingerprint representations. Then, we train a scale compound network (EfficientNetV2) coupled with multiple head classifiers (one classifier for each domain) using the source domain and the translated images. The outputs of these classifiers are then aggregated using an additional fusion layer with learnable weights. In the experiments, we validate the proposed methodology on the public LivDet2015 dataset. The experimental results show that the proposed method improves the average classification accuracy over twelve classification scenarios from 67.80 to 80.44% after adaptation.

Details

Language :
English
ISSN :
10994300
Volume :
23
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Entropy
Publication Type :
Academic Journal
Accession number :
edsdoj.505d4e60564e454492daffe527f620d0
Document Type :
article
Full Text :
https://doi.org/10.3390/e23081089