Back to Search Start Over

Transformation of europium metal-organic framework from 3D via 2D into exfoliating 3D for enzyme immobilization

Authors :
Ani Vardanyan
Guojun Zhou
Nayoung Kim
Tetyana M. Budnyak
Vadim G. Kessler
Insung S. Choi
Zhehao Huang
Gulaim A. Seisenbaeva
Source :
Communications Materials, Vol 5, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Metal-organic frameworks (MOFs) have emerged as highly promising materials for hosting functional biomolecules. Here, a 1,2,4-benzenetricarboxylate ligand with a flat asymmetric shape is applied to infuse an unusual behavior to a 3D europium MOF (SLU-1). Solvent addition results in the 3D MOF splitting into a 2D one (SLU-2), and in the presence of excess water, gets cross-linked into a different 3D MOF (SLU-3) prone to spontaneous exfoliation. SLU-3 features a combination of highly hydrophilic and hydrophobic spots and serves as an attractive host for incorporating large active species. As a representative demonstration, horseradish peroxidase (HRP) is incorporated into the exfoliated 3D-layered structure by simple mixing, and secured by an outer silica layer in the form of core-shell structures. The resulting HRP-based biocatalyst exhibited enhanced stability and reusability, effectively degrading phenol. This work showcases the potential of reconfigurable MOFs, offering upheld applications through the controlled uptake and retention of biocatalytic agents.

Details

Language :
English
ISSN :
26624443
Volume :
5
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.50574fe3029747308fdab717fa7c9914
Document Type :
article
Full Text :
https://doi.org/10.1038/s43246-024-00624-y