Back to Search Start Over

Land Subsidence Susceptibility Mapping Using Bayesian, Functional, and Meta-Ensemble Machine Learning Models

Authors :
Hyun-Joo Oh
Mutiara Syifa
Chang-Wook Lee
Saro Lee
Source :
Applied Sciences, Vol 9, Iss 6, p 1248 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

To effectively prevent land subsidence over abandoned coal mines, it is necessary to quantitatively identify vulnerable areas. In this study, we evaluated the performance of predictive Bayesian, functional, and meta-ensemble machine learning models in generating land subsidence susceptibility (LSS) maps. All models were trained using half of a land subsidence inventory, and validated using the other half of the dataset. The model performance was evaluated by comparing the area under the receiver operating characteristic (ROC) curve of the resulting LSS map for each model. Among all models tested, the logit boost, which is a meta-ensemble machine leaning model, generated LSS maps with the highest accuracy (91.44%), i.e., higher than that of the other Bayesian and functional machine learning models, including the Bayes net (86.42%), naïve Bayes (85.39%), logistic (88.92%), and multilayer perceptron models (86.76%). The LSS maps produced in this study can be used to mitigate subsidence risk for people and important facilities within the study area, and as a foundation for further studies in other regions.

Details

Language :
English
ISSN :
20763417
Volume :
9
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.5025838454b64770824c585f02dd0c20
Document Type :
article
Full Text :
https://doi.org/10.3390/app9061248