Back to Search Start Over

Airborne measurement of OH reactivity during INTEX-B

Authors :
J. Mao
X. Ren
W. H. Brune
J. R. Olson
J. H. Crawford
A. Fried
L. G. Huey
R. C. Cohen
B. Heikes
H. B. Singh
D. R. Blake
G. W. Sachse
G. S. Diskin
S. R. Hall
R. E. Shetter
Source :
Atmospheric Chemistry and Physics, Vol 9, Iss 1, Pp 163-173 (2009)
Publication Year :
2009
Publisher :
Copernicus Publications, 2009.

Abstract

The measurement of OH reactivity, the inverse of the OH lifetime, provides a powerful tool to investigate atmospheric photochemistry. A new airborne OH reactivity instrument was designed and deployed for the first time on the NASA DC-8 aircraft during the second phase of Intercontinental Chemical Transport Experiment-B (INTEX-B) campaign, which was focused on the Asian pollution outflow over Pacific Ocean and was based in Hawaii and Alaska. The OH reactivity was measured by adding OH, generated by photolyzing water vapor with 185 nm UV light in a moveable wand, to the flow of ambient air in a flow tube and measuring the OH signal with laser induced fluorescence. As the wand was pulled back away from the OH detector, the OH signal decay was recorded; the slope of −Δln(signal)/Δ time was the OH reactivity. The overall absolute uncertainty at the 2σ confidence levels is about 1 s−1 at low altitudes (for decay about 6 s−1), and 0.7 s−1 at high altitudes (for decay about 2 s−1). From the median vertical profile obtained in the second phase of INTEX-B, the measured OH reactivity (4.0±1.0 s−1) is higher than the OH reactivity calculated from assuming that OH was in steady state (3.3&plusmn0.8 s−1), and even higher than the OH reactivity that was calculated from the total measurements of all OH reactants (1.6±0.4 s−1). Model calculations show that the missing OH reactivity is consistent with the over-predicted OH and under-predicted HCHO in the boundary layer and lower troposphere. The over-predicted OH and under-predicted HCHO suggest that the missing OH sinks are most likely related to some highly reactive VOCs that have HCHO as an oxidation product.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.4fffdd5ebd694f5596c5307095ddbcdb
Document Type :
article