Back to Search Start Over

CohortFinder: an open-source tool for data-driven partitioning of digital pathology and imaging cohorts to yield robust machine-learning models

Authors :
Fan Fan
Georgia Martinez
Thomas DeSilvio
John Shin
Yijiang Chen
Jackson Jacobs
Bangchen Wang
Takaya Ozeki
Maxime W. Lafarge
Viktor H. Koelzer
Laura Barisoni
Anant Madabhushi
Satish E. Viswanath
Andrew Janowczyk
Source :
npj Imaging, Vol 2, Iss 1, Pp 1-7 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Batch effects (BEs) refer to systematic technical differences in data collection unrelated to biological variations whose noise is shown to negatively impact machine learning (ML) model generalizability. Here we release CohortFinder ( http://cohortfinder.com ), an open-source tool aimed at mitigating BEs via data-driven cohort partitioning. We demonstrate CohortFinder improves ML model performance in downstream digital pathology and medical image processing tasks. CohortFinder is freely available for download at cohortfinder.com.

Details

Language :
English
ISSN :
2948197X
Volume :
2
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Imaging
Publication Type :
Academic Journal
Accession number :
edsdoj.4fdb68ecd100482e94a7fe441fb62a63
Document Type :
article
Full Text :
https://doi.org/10.1038/s44303-024-00018-2