Back to Search Start Over

Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California

Authors :
Xiaoming Wang
Guofa Zhou
Daibin Zhong
Yiji Li
Stacia Octaviani
Andrew T. Shin
Timothy Morgan
Kiet Nguyen
Jessica Bastear
Melissa Doyle
Robert F. Cummings
Guiyun Yan
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract An extensive network of storm water conveyance systems in urban areas, often referred to as the “underground storm drain system” (USDS), serves as significant production habitats for mosquitoes. Knowledge of whether USDS habitats are suitable for newly introduced dengue vectors Aedes aegypti and Ae. albopictus will help guide surveillance and control efforts. To determine whether the USDS functions as a suitable larval habitat for Culex, Ae. aegypti and Ae. albopictus in southern California, we examined mosquito habitat utilization and larval survivorship using laboratory microcosm studies. The data showed that USDS constituted 4.1% of sampled larval habitats for Ae. aegypti and Ae. albopictus, and 22.0% for Cx. quinquefasciatus. Furthermore, USDS water collected in the summer completely inhibited Aedes larval development, but yielded a 15.0% pupation rate for Cx. quinquefasciatus. Food supplementation in the microcosms suggests that nutrient deficiency, toxins and other factors in the USDS water led to low success or complete failure of larval development. These results suggest that USDS habitats are currently not major productive larval habitats for Aedes mosquitoes in southern California. Our findings prompt inclusion of assessments of pupal productivity in USDS habitats and adult mosquito resting sites in the mosquito surveillance program.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.4fd69e6cd39e4363877918c4c4104e8a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-92190-3