Back to Search Start Over

Multiview Graph Learning for Small- and Medium-Sized Enterprises’ Credit Risk Assessment in Supply Chain Finance

Authors :
Cong Wang
Fangyue Yu
Zaixu Zhang
Jian Zhang
Source :
Complexity, Vol 2021 (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

In recent years, supply chain finance (SCF) is exploited to solve the financing difficulties of small- and medium-sized enterprises (SMEs). SME credit risk assessment is a critical part in the SCF system. The diffusion of SME credit risk may cause serious consequences, leading the whole supply chain finance system unstable and insecure. Compared with traditional credit risk assessment models, the supply chain relationship, credit condition of SME, and core enterprises should all be considered to rate SME credit risk in SCF. Traditional methods mix all indicators from different index systems. They cannot give a quantitative result on how these index systems work. Furthermore, traditional credit risk assessment models are heavily dependent on the number of annotated SME data. However, it is implausible to accumulate enough credit risky SMEs in advance. In this paper, we propose an adaptive heterogenous multiview graph learning method to tackle the small sample size problem for SMEs’ credit risk forecasting. Three graphs are constructed by using indicators from supply chain operation, SME financial indicator, and nonfinancial indicator individually. All the graphs are integrated in an adaptive manner, providing a quantitative explanation on how the three parts cooperate. The experimental analysis shows that the proposed method has good performance for determining whether SME is risky or nonrisky in SCF. From the perspective of SCF, SME financing ability is still the main factor to determine the credit risk of SME.

Details

Language :
English
ISSN :
10762787 and 10990526
Volume :
2021
Database :
Directory of Open Access Journals
Journal :
Complexity
Publication Type :
Academic Journal
Accession number :
edsdoj.4fd1eb305ee14fffa100d0eb94bfc331
Document Type :
article
Full Text :
https://doi.org/10.1155/2021/6670873