Back to Search Start Over

Femtosecond Laser-Assisted Formation of Hybrid Nanoparticles from Bi-Layer Gold–Silicon Films for Microscale White-Light Source

Authors :
Sergei Koromyslov
Eduard Ageev
Ekaterina Ponkratova
Artem Larin
Ivan Shishkin
Denis Danilov
Ivan Mukhin
Sergey Makarov
Dmitry Zuev
Source :
Nanomaterials, Vol 12, Iss 10, p 1756 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

It is very natural to use silicon as a primary material for microelectronics. However, silicon application in nanophotonics is limited due to the indirect gap of its energy band structure. To improve the silicon emission properties, it can be combined with a plasmonic part. The resulting metal–dielectric (hybrid) nanostructures have shown their excellence compared to simple metallic dielectric nanostructures. Still, in many cases, the fabrication of such structures is time consuming and quite difficult. Here, for the first time, we demonstrate a single-step and lithography-free laser-induced dewetting of bi-layer nanoscale-thickness gold–silicon films supported by a glass substrate to produce hybrid nanoparticles. For obtaining hybrid nanoparticles, we study nonlinear photoluminescence by mapping their optical response and morphology by scanning electron microscopy. This method can be used for the fabrication of arrays of hybrid nanoparticles providing white-light photoluminescence with a good control of their microscopic sizes and position. The developed approach can be useful for a wide range of photonic applications including the all-optical data processing and storage where miniaturization down to micro- and nanoscale together with an efficiency increase is of high demand.

Details

Language :
English
ISSN :
20794991
Volume :
12
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.4f7fc3ea05874fa7a93bf7706f523620
Document Type :
article
Full Text :
https://doi.org/10.3390/nano12101756