Back to Search Start Over

Catalytic Conversion of Methane to Methanol Using Cu-Zeolites

Authors :
Evalyn Mae C. Alayon
Maarten Nachtegaal
Marco Ranocchiari
Jeroen A. van Bokhoven
Source :
CHIMIA, Vol 66, Iss 9 (2012)
Publication Year :
2012
Publisher :
Swiss Chemical Society, 2012.

Abstract

The conversion of methane to value-added liquid chemicals is a promising answer to the imminent demand for fuels and chemical synthesis materials in the advent of a dwindling petroleum supply. Current technology requires high energy input for the synthesis gas production, and is characterized by low overall selectivity, which calls for alternative reaction routes. The limitation to achieve high selectivity is the high C–H bond strength of methane. High-temperature reaction systems favor gas-phase radical reactions and total oxidation. This suggests that the catalysts for methane activation should be active at low temperatures. The enzymatic-inspired metal-exchanged zeolite systems apparently fulfill this need, however, methanol yield is low and a catalytic process cannot yet be established. Homogeneous and heterogeneous catalytic systems have been described which stabilize the intermediate formed after the first C–H activation. The understanding of the reaction mechanism and the determination of the active metal sites are important for formulating strategies for the upgrade of methane conversion catalytic technologies.

Details

Language :
German, English, French
ISSN :
00094293 and 26732424
Volume :
66
Issue :
9
Database :
Directory of Open Access Journals
Journal :
CHIMIA
Publication Type :
Academic Journal
Accession number :
edsdoj.4edabfa3a9a54715882f64fc4a063e2f
Document Type :
article
Full Text :
https://doi.org/10.2533/chimia.2012.668