Back to Search Start Over

Designing microplate layouts using artificial intelligence

Authors :
María Andreína Francisco Rodríguez
Jordi Carreras Puigvert
Ola Spjuth
Source :
Artificial Intelligence in the Life Sciences, Vol 3, Iss , Pp 100073- (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Microplates are indispensable in large-scale biomedical experiments but the physical location of samples and controls on the microplate can significantly affect the resulting data and quality metric values. We introduce a new method based on constraint programming for designing microplate layouts that reduces unwanted bias and limits the impact of batch effects after error correction and normalisation. We demonstrate that our method applied to dose-response experiments leads to more accurate regression curves and lower errors when estimating IC50/EC50, and for drug screening leads to increased precision, when compared to random layouts. It also reduces the risk of inflated scores from common microplate quality assessment metrics such as Z′ factor and SSMD. We make our method available via a suite of tools (PLAID) including a reference constraint model, a web application, and Python notebooks to evaluate and compare designs when planning microplate experiments.

Details

Language :
English
ISSN :
26673185
Volume :
3
Issue :
100073-
Database :
Directory of Open Access Journals
Journal :
Artificial Intelligence in the Life Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.4eb4ac3170434eb936e1ed39eb01d8
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ailsci.2023.100073