Back to Search Start Over

Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: evaluation in Alzheimer’s disease

Authors :
Martin Dyrba
Moritz Hanzig
Slawek Altenstein
Sebastian Bader
Tommaso Ballarini
Frederic Brosseron
Katharina Buerger
Daniel Cantré
Peter Dechent
Laura Dobisch
Emrah Düzel
Michael Ewers
Klaus Fliessbach
Wenzel Glanz
John-Dylan Haynes
Michael T. Heneka
Daniel Janowitz
Deniz B. Keles
Ingo Kilimann
Christoph Laske
Franziska Maier
Coraline D. Metzger
Matthias H. Munk
Robert Perneczky
Oliver Peters
Lukas Preis
Josef Priller
Boris Rauchmann
Nina Roy
Klaus Scheffler
Anja Schneider
Björn H. Schott
Annika Spottke
Eike J. Spruth
Marc-André Weber
Birgit Ertl-Wagner
Michael Wagner
Jens Wiltfang
Frank Jessen
Stefan J. Teipel
for the ADNI, AIBL, DELCODE study groups
Source :
Alzheimer’s Research & Therapy, Vol 13, Iss 1, Pp 1-18 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Background Although convolutional neural networks (CNNs) achieve high diagnostic accuracy for detecting Alzheimer’s disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehensibility. Recently developed visualization methods for deriving CNN relevance maps may help to fill this gap as they allow the visualization of key input image features that drive the decision of the model. We investigated whether models with higher accuracy also rely more on discriminative brain regions predefined by prior knowledge. Methods We trained a CNN for the detection of AD in N = 663 T1-weighted MRI scans of patients with dementia and amnestic mild cognitive impairment (MCI) and verified the accuracy of the models via cross-validation and in three independent samples including in total N = 1655 cases. We evaluated the association of relevance scores and hippocampus volume to validate the clinical utility of this approach. To improve model comprehensibility, we implemented an interactive visualization of 3D CNN relevance maps, thereby allowing intuitive model inspection. Results Across the three independent datasets, group separation showed high accuracy for AD dementia versus controls (AUC ≥ 0.91) and moderate accuracy for amnestic MCI versus controls (AUC ≈ 0.74). Relevance maps indicated that hippocampal atrophy was considered the most informative factor for AD detection, with additional contributions from atrophy in other cortical and subcortical regions. Relevance scores within the hippocampus were highly correlated with hippocampal volumes (Pearson’s r ≈ −0.86, p < 0.001). Conclusion The relevance maps highlighted atrophy in regions that we had hypothesized a priori. This strengthens the comprehensibility of the CNN models, which were trained in a purely data-driven manner based on the scans and diagnosis labels. The high hippocampus relevance scores as well as the high performance achieved in independent samples support the validity of the CNN models in the detection of AD-related MRI abnormalities. The presented data-driven and hypothesis-free CNN modeling approach might provide a useful tool to automatically derive discriminative features for complex diagnostic tasks where clear clinical criteria are still missing, for instance for the differential diagnosis between various types of dementia.

Details

Language :
English
ISSN :
17589193
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Alzheimer’s Research & Therapy
Publication Type :
Academic Journal
Accession number :
edsdoj.4ea07e2a7a2f4319ab977e9fcdcd6e3d
Document Type :
article
Full Text :
https://doi.org/10.1186/s13195-021-00924-2