Back to Search Start Over

Redesign of a virtual reality basic life support module for medical training – a feasibility study

Authors :
Iris L. Wiltvank
Lotte M Besselaar
Harry van Goor
Edward C.T.H. Tan
Source :
BMC Emergency Medicine, Vol 24, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Healthcare providers, including medical students, should maintain their basic life support (BLS) skills and be able to perform BLS in case of cardiac arrest. Research shows that the use of virtual reality (VR) has advantages such as improved accessibility, practice with lifelike situations, and real-time feedback during individual training sessions. A VR BLS module incorporating these advantages, called Virtual Life Support, has been developed especially for the medical domain. Virtual Life Support was collaboratively developed by software developers and stakeholders within the field of medical education. For this study, we explored whether the first version of this module capitalised on the advantages of VR and aimed to develop an understanding of barriers to feasibility of use. Methods This study was conducted to assess the feasibility of employing Virtual Life Support for medical training and pinpoint potential obstacles. Four groups of stakeholders were included through purposive sampling: physicians, BLS instructors, educational experts, and medical students. Participants performed BLS on a BLS mannequin while using Virtual Life Support and were interviewed directly afterwards using semi-structured questions. The data was coded and analysed using thematic analysis. Results Thematic saturation was reached after seventeen interviews were conducted. The codes were categorised into four themes: introduction, content, applicability, and acceptability/tolerability. Sixteen barriers for the use of Virtual Life Support were found and subsequently categorised into must-have (restraining function, i.e. necessary to address) and nice to have features (non-essential elements to consider addressing). Conclusion The study offers valuable insights into redesigning Virtual Life Support for Basic Life Support training, specifically tailored for medical students and healthcare providers, using a primarily qualitative approach. The findings suggest that the benefits of virtual reality, such as enhanced realism and immersive learning, can be effectively integrated into a single training module. Further development and validation of VR BLS modules, such as the one evaluated in this study, have the potential to revolutionise BLS training. This could significantly improve both the quality of skills and the accessibility of training, ultimately enhancing preparedness for real-life emergency scenarios.

Details

Language :
English
ISSN :
1471227X
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Emergency Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.4e36495119574ccebe2a0ec57b3a1e11
Document Type :
article
Full Text :
https://doi.org/10.1186/s12873-024-01092-w