Back to Search Start Over

Literature Review of Hybrid CO2 Low Salinity Water-Alternating-Gas Injection and Investigation on Hysteresis Effect

Authors :
Shijia Ma
Lesley A. James
Source :
Energies, Vol 15, Iss 21, p 7891 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Low salinity water injection (LSWI) is considered to be more cost-effective and has less environmental impacts over conventional chemical Enhanced Oil Recovery (EOR) methods. CO2 Water-Alternating-Gas (WAG) injection is also a leading EOR flooding process. The hybrid EOR method, CO2 low salinity (LS) WAG injection, which incorporates low salinity water into CO2 WAG injection, is potentially beneficial in terms of optimizing oil recovery and decreasing operational costs. Experimental and simulation studies reveal that CO2 LSWAG injection is influenced by CO2 solubility in brine, brine salinity and composition, rock composition, WAG parameters, and wettability. However, the mechanism for increased recovery using this hybrid method is still debatable and the conditions under which CO2 LSWAG injection is effective are still uncertain. Hence, a comprehensive review of the existing literature investigating LSWI and CO2 WAG injection, and laboratory and simulation studies of CO2 LSWAG injection is essential to understand current research progress, highlight knowledge gaps and identify future research directions. With the identified research gap, a core-scale simulation study on hysteresis effect in CO2 LSWAG injection is carried out. The results indicate different changing trend in oil recovery due to the impact of salinity on hysteresis and excluding of hysteresis effect in CO2 LSWAG injection simulation and optimization might lead to significant errors.

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.4e29685267ef4774b9cee6ad5e029300
Document Type :
article
Full Text :
https://doi.org/10.3390/en15217891