Back to Search Start Over

Deep learning and ensemble stacking technique for differentiating polypoidal choroidal vasculopathy from neovascular age-related macular degeneration

Authors :
Yu-Bai Chou
Chung-Hsuan Hsu
Wei-Shiang Chen
Shih-Jen Chen
De-Kuang Hwang
Yi-Ming Huang
An-Fei Li
Henry Horng-Shing Lu
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract Polypoidal choroidal vasculopathy (PCV) and neovascular age-related macular degeneration (nAMD) share some similarity in clinical imaging manifestations. However, their disease entity and treatment strategy as well as visual outcomes are very different. To distinguish these two vision-threatening diseases is somewhat challenging but necessary. In this study, we propose a new artificial intelligence model using an ensemble stacking technique, which combines a color fundus photograph-based deep learning (DL) model and optical coherence tomography-based biomarkers, for differentiation of PCV from nAMD. Furthermore, we introduced multiple correspondence analysis, a method of transforming categorical data into principal components, to handle the dichotomous data for combining with another image DL system. This model achieved a robust performance with an accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of 83.67%, 80.76%, 84.72%, and 88.57%, respectively, by training nearly 700 active cases with suitable imaging quality and transfer learning architecture. This work could offer an alternative method of developing a multimodal DL model, improve its efficiency for distinguishing different diseases, and facilitate the broad application of medical engineering in a DL model design.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.4e28f29a53b46599fddd262e0dc345d
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-86526-2