Back to Search Start Over

On a Fractional in Time Nonlinear Schrödinger Equation with Dispersion Parameter and Absorption Coefficient

Authors :
Mohamed Jleli
Bessem Samet
Calogero Vetro
Source :
Symmetry, Vol 12, Iss 7, p 1197 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

This paper is concerned with the nonexistence of global solutions to fractional in time nonlinear Schrödinger equations of the form i α ∂ t α ω ( t , z ) + a 1 ( t ) Δ ω ( t , z ) + i α a 2 ( t ) ω ( t , z ) = ξ | ω ( t , z ) | p , ( t , z ) ∈ ( 0 , ∞ ) × R N , where N ≥ 1 , ξ ∈ C \ { 0 } and p > 1 , under suitable initial data. To establish our nonexistence theorem, we adopt the Pohozaev nonlinear capacity method, and consider the combined effects of absorption and dispersion terms. Further, we discuss in details some special cases of coefficient functions a 1 , a 2 ∈ L l o c 1 ( [ 0 , ∞ ) , R ) , and provide two illustrative examples.

Details

Language :
English
ISSN :
20738994
Volume :
12
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Symmetry
Publication Type :
Academic Journal
Accession number :
edsdoj.4e20ef8d5db3453995071e7b080dd5ec
Document Type :
article
Full Text :
https://doi.org/10.3390/sym12071197