Back to Search Start Over

Comparing the accuracy of PCR-capillary electrophoresis and cuticle microhistological analysis for assessing diet composition in ungulates: A case study with Pyrenean chamois.

Authors :
Johan Espunyes
Carme Espunya
Sara Chaves
Juan Antonio Calleja
Jordi Bartolomé
Emmanuel Serrano
Source :
PLoS ONE, Vol 14, Iss 5, p e0216345 (2019)
Publication Year :
2019
Publisher :
Public Library of Science (PLoS), 2019.

Abstract

The study of diet composition is required to understand the interactions between animal and plant ecosystems. Different non-invasive techniques applied on faecal samples have commonly been used for such purposes, with cuticle microhistological analysis (CMA) and emerging DNA-based methods being the most relevant. In this work, we refined and optimized a qualitative DNA-based approach combining PCR amplification of long trnL(UAA) and ITS2 fragments and capillary electrophoresis (PCR-CE), instead of short trnL(UAA) fragments and massive sequencing technologies commonly reported. To do so, we developed a controlled diet assay using a stabled Pyrenean chamois specimen (Rupicapra pyrenaica pyrenaica), which included representative herbaceous and shrubby plant species. We also assessed the impact of sample freshness on the diet determination of this mountain caprinae by exposing faecal samples to the outdoor environment for three weeks. Faecal samples from both experiments were analysed by qualitative PCR-CE and semi-quantitative CMA in order to compare the pros and cons of both approaches. Our results show that all of the offered plant species were detected by both methodologies although CMA over-detected shrubs compared to herbaceous species. At the same time, sample degradation due to sustained climate exposure is a limiting factor for molecular analysis, but not for CMA. Taken all together, our results suggest that the qualitative information obtained by CMA and PCR-CE can be interchangeable when faecal samples are fresh (less than one week after deposition) but, afterwards, molecular analysis underestimates diet composition probably due to DNA degradation. CMA, however, can accurately be used at least three weeks after defecation. Moreover, by combining the results of simultaneous PCR amplification of two complementary genes, this optimized PCR-CE methodology provides a reliable, feasible and more affordable alternative for multiple and routine analyses of complex samples. Neither CMA nor PCR-CE seems to solve comprehensively the quatification of herbivore diets and thus further research needs to be done.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
5
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.4dddfc6e5e7d49ad8ceac6eda3a10261
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0216345